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Abstract

The goal of this study was to use watershed characteristics derived from LIDAR data to
predict stream biogeochemistry in Pacific coastal temperate rainforest (PCTR) watersheds. Over
a two-day period, we sampled 37 streams for concentrations of dissolved C, N, P, major cations
and measures of dissolved organic matter (DOM) quality (specific ultraviolet absorbance,
SUVA,s4) and bioavailability. Random forest/classification tree (CART) analysis showed that
aboveground biomass and structure and watershed characteristics, inclusive of mean watershed
slope and elevation, watershed size and topographic wetness, explained more than 60% of the
variation in concentration for most measured constituents. These results indicate this approach
may be particularly useful for predicting stream biogeochemistry in small forested watersheds
where fine resolution is needed to resolve subtle differences in forest biomass, structure and
topography. Overall, we suggest that the use of LIDAR in many of the small and remote
watersheds across the southeast Alaskan PCTR as well as other forested regions could help
inform land management decisions that have the potential to alter ecosystems services related to

watershed biogeochemical fluxes.

Key Words: stream biogeochemistry, LIDAR, dissolved organic matter, stable water isotopes

Page 2 of 41



Page 3 of 41

guat. Sci. Downloaded from www.nrcresearchpress.com by UNIVERSITY OF ALASKA SQUTHEAST on 12/01/16

For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

Can. J. Fish. A

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Introduction

Stream export of terrestrial-derived dissolved organic matter (DOM) is increasingly being
recognized as an important component of watershed-scale carbon cycling because of impacts to
the carbon balance of terrestrial ecosystems, especially over decadal time scales (Cole et al.
2007). Riverine DOM also acts as a vector for nitrogen (N), phosphorus (P), trace metals and
contaminants (Qualls and Richardson 2003, Pellerin et al. 2004, Lidman et al. 2014) making the
terrestrial-aquatic flux of DOM an important control on the ecology (e.g., heterotrophic
metabolism) and chemical properties (e.g., pH) of aquatic ecosystems (Dalzell et al. 2005,
Wiegner et al. 2005). These ecological qualities of DOM vary with its chemical quality and
bioavailability. Hence, DOM derived from different watershed sources (e.g., urban runoff,
wetland and forest soils) may have different impacts on aquatic ecosystem processes (Kaplan
and Bott 1985, Williams et al. 2010).

Streamwater DOM, measured as dissolved organic carbon (DOC), and nutrient
concentrations (N and P) are controlled by multiple watershed characteristics including
landscape/soil type, land-use history, watershed size and vegetation (Clark et al. 2004, Kaplan et
al. 2006, Tank et al. 2012). Wetlands are a well-recognized source of DOM and nutrients to
streams and many studies have used watershed wetland coverage as a first order approximation
of DOC concentrations (Dillon and Molot 1997, Gergel et al. 1999, D’ Amore et al. 2015).
However, wetland coverage alone cannot predict the spatial and temporal variability in
streamwater DOM (Agren et al. 2007). This is particularly true as watersheds increase in size
and complexity, and as varying ecological factors (e.g., species composition, cover type)
influence the availability of soluble DOM for export to streams. Moreover, streamwater DOM

and nutrient fluxes are being altered in many regions as a result of forest conversion (Stanley and
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Maxted 2008, Moore et al. 2013, Regnier et al. 2013) urban development (Pellerin et al. 2004,
Petrone 2010) and hydrologic modification (Miller 2012). Thus, quantifying DOM and nutrient
export from varied landscape types helps elucidate how topography, biological factors (e.g.
aboveground biomass) and land use change impact stream carbon export.

There has been much research over the last several decades attempting to relate landscape
characteristics to stream biogeochemistry (Dillon and Molot 1997, Mattsson et al. 2005, Stanley
and Maxted 2008). Yet, many of these landscape analyses have had mixed success in predicting
stream biogeochemical concentrations (Frost et al. 2006, Cuevas et al. 2006). Thus, new tools for
predicting streamwater biogeochemistry at the watershed-scale are necessary, particularly for
improving land management as it pertains to biogeochemical cycling. LiDAR (light detection
and ranging) is a remote sensing technology commonly used to acquire topography of the ground
surface (bare earth) and vegetation structure (surface model) at fine spatial resolution over large
scales. Recent research has highlighted the ability of LIDAR to model forest biomass, structure
and composition (Hudak et al. 2012). LiDAR has also been useful for estimating DOC
concentrations in boreal forest streams using contributing landscape components because it
provides a robust level of detail for watershed characteristics such as slope and watershed surface
area (Creed et al. 2008, Agren et al. 2014). Being able to use LIDAR as a predictive tool would
be especially beneficial in heterogeneous landscapes such as the Perhumid Coastal Temperate
Rainforest (PCTR) of southeast Alaska where small headwater streams are abundant, poorly
accessible for sampling and estimated to contain some of the highest areal DOC fluxes in the
world (D’ Amore et al. 2015).

The goal of this study was to use watershed landcover characteristics derived from

LIDAR data, such as biomass, watershed morphology and relative disturbance exposure, to
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predict stream biogeochemistry in PCTR watersheds. Over a two-day period, we sampled 37
streams draining small sub-watersheds and analyzed the surface water for N, P, DOM
concentration, quality (as measured by the specific ultraviolet absorbance, SUVA;s4) and
bioavailability and major cations. Linking high-resolution forest structural information with
stream biogeochemical concentrations is a relatively novel application of LiDAR, which could
provide an improved method for estimating the land-to-ocean flux of DOM and nutrients in this
region. We also measured stable isotopes of water (8'*0) in all study streams to help identify

watershed sources of streamwater and their potential influence on stream biogeochemistry.

Methods
Site description and field methods

Streamwater was collected from the Cowee Creek watershed located on the western
margin of the 3800 km? Juneau Icefield. The research watershed is part of the USDA Forest
Service Héen Latinee Experimental Forest, near Juneau, Alaska (Fig. 1). Juneau has a moderate
maritime climate with persistent cloud cover and a mean monthly temperature at sea level
ranging from -2 to 14 °C. Numerous glacial epochs have sculpted the Coast Mountains of
southeast Alaska leaving steep sloping watersheds with serrated ridges creating an orographic
barrier that results in a mean annual precipitation at sea level in Juneau of ~2,100 mm but is
estimated to be as high as 5,000 mm at higher elevations. Most of this precipitation falls as rain
during large frontal storms in autumn (Aug-Nov) or as snow at high elevations during the winter.
Southeast Alaska also contains extensive lowlands containing carbon-rich peatlands mixed with

coniferous forest resulting in some of the densest terrestrial carbon stocks (>300 Mg C ha™) in
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the world (Heath et al. 2011). Soil carbon densities in the regions abundant wetlands can be as
high as 600 Mg C ha™' (Johnson et al. 2011).

The 118 km” Cowee Creek watershed contains three hanging glaciers with 13% of the
watershed covered by glacier ice, 57% covered by forest and 5% covered by wetlands (Fellman
et al. 2014b). The remainder of the watershed consists of alpine landscapes. Average watershed
elevation is 638 m, with a mean slope of 23°. The upper reaches of the watershed are
characterized by recently deglaciated terrain with high alpine tundra, exposed bedrock, poorly
developed soils and little vascular vegetation. At mid to lower elevations, the landscape is older,
consisting of mixed coniferous forest dominated by Picea sitchensis and Tsuga heterophylla with
an understory of blueberry (Vaccinium spp.) on moderate slopes and well-drained flat lands and
Alnus (spp.) along avalanche/landslide paths and riparian areas. In low-gradient areas that are
poorly drained, forested and unforested wetlands develop: forested dominated by P. sitchensis
and 7. heterophylla with an understory of skunk cabbage (Lysichiton americanum) and
Vaccinium spp., and unforested dominated by Ericaceous shrubs, sedges (Carex spp.), shore pine
(Pinus contorta) and Sphagnum spp.

Streamwater was collected from 37 sub-watersheds within the Cowee Creek watershed
over a two-day period in July of 2014 (Fig 1). The 37 sub-watersheds range in area from <1.0 to
16.7 km? with an average slope of 23.7° (Table 1). Although the lower reaches of Cowee Creek
contain anadromous salmon, the small and steeply sloping study streams do not support salmon.
Streams were sampled during mid-summer baseflow conditions before the onset of the late
summer/early fall wet season in the region. All streamwater samples were field-filtered through
pre-combusted (450 °C for 4 hrs), Whatman glass fiber filters (nominal pore size 0.7 um) and

placed in acid washed polyethylene bottles for nutrient and cation analyses and in pre-combusted
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(450 °C for 4 hrs) glass vials for DOM analyses. Stream temperature and specific conductivity
were measured at the study reach using a hand-held YSI (model 556) meter.
Landscape components and LiDAR analysis

LiDAR measurements of Cowee Creek watershed were obtained at an average point
density of ~8 measurements per m>. These data were used to produce a high-resolution 1 m*
DEM of the watershed, from which sub-watersheds for each of the 37 stream sampling sites were
delineated. Mean aboveground biomass, canopy cover percentage and tree height were extracted
from the LiDAR map (details below). The mean slope, percent of the area less than 10° slope,
mean watershed elevation, watershed area, watershed surface area and topographic wetness
index (TWI, indicator of soil moisture conditions and is calculated using the upslope contributing
area and slope, Serensen et al. 2006) were extracted from the LIDAR DEM. Finally, mean wind
exposure (calculated based on topographic sheltering from predominant storm tracks in the
region) and slide suitability (susceptibility to landslide initiation and is based on topographic
drivers such as slope and topographic position) were calculated from LIDAR data following
(Buma and Johnson 2015). The end result is a suite of vegetative, topographic, and disturbance-
relevant variables describing each sub-watershed.
Determination of aboveground biomass

Aboveground biomass was mapped using high resolution LiDAR. Extensive field
biomass measurements were completed to calibrate the watershed biomass map. Briefly, 47 plots
(400 m*) were established throughout the study area, stratified according to observed canopy
height (utilizing a preliminary 5x5m LiDAR map) so the entire range of aboveground biomass
was sampled. At each point, all trees were measured for species, diameter at breast height,

canopy condition, breakage, and live/dead status. Total standing aboveground biomass was then
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tallied using equations from Ter-Mikaelian and Korzukhin (1997) and Standish et al. (1985). For
broken trees, actual height was estimated using (Keyser 2008) and then tapering equations from
(Kozak et al. 1969) were applied to generate accurate biomass estimates. Foliage mass was
removed from dead trees; if tree species could not be determined it was assumed to be P.
sitchensis for biomass calculations. Standing biomass was assumed to be 50% carbon. For
downed material, the standard line-intercept method of Brown (1974) was used. Two 20m
perpendicular lines were measured for each plot. A specific gravity of 0.39 and 0.19 for sound
and rotten wood was assumed for carbon calculations (Harmon et al. 2011). The total carbon at
each point was then modeled from the LiDAR data using standard methods (e.g., Hudak et al.
2012). Briefly, using a multivariate adaptive regression splines technique (Friedman 1991,
Giineralp et al. 2014), 61 statistical descriptions of the LIDAR point cloud (e.g., median height of
all returns, 20m resolution), and 5 additional spatial datasets (forest type, land cover,
precipitation, wind exposure, and landslide susceptibility), observed biomass was fit to the
LiDAR data and then extrapolated over the entire watershed. The final model was a good fit to
the observed data without overfitting (r* = 0.76, mean error 2.03 Mg/ha). The result is a 20 m
resolution biomass map of the entire study area (see Hudak et al. 2012 for full details).
Biogeochemical and stable water isotope analyses

A 25 ml water sample was also collected for 8'°0 analysis of streamwater to assist in
identification of the different water sources (e.g., rainwater vs. snowmelt) contributing to
streamflow. Snow and glacier ice are often depleted in 5'®O relative to rainfall and groundwater
because low temperatures and increasing elevation typically result in natural fractionation
(Dansgaard 1964, Dietermann and Weiler 2013). Thus, comparison of 8'%0 in precipitation and

surface water can be used for flow path analysis and runoff generation (Vitvar and Balderer
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1997) and as an indicator of the origin of surface water in watersheds where glacier ice and
snowmelt contribute to streamflow (Fellman et al. 2014a). Water isotope samples were stored in
glass bottles with zero headspace at room temperature until analysis on a Picarro L2120-1
analyzer. Values for 80 are reported in per mil (%o) after normalization to Vienna standard
mean ocean water (VSMOW, Paul et al. 2007).

Concentrations of DOC and total dissolved N (TDN) were analyzed by high temperature
combustion (non-purgeable organic carbon) on a Shimadzu TOC-V-CSH analyzer using a high
sensitivity catalyst to enable low detection limits for DOC. Analytical precision for DOC ranged
from 0.02-0.04 mg C L™ for concentrations less than 5 mg C L™ and 0.1-0.2 mg C L™ for
samples greater than 5 mg C L. Major anions (NO3-N) were measured using a Dionex DX600
ion chromatograph with an AS18A anion column and cations (Ca, K, Mg and NH4-N) were
measured using a Dionex ICS-1500 with a CS16C cation column. Dissolved organic nitrogen
(DON) was calculated as the difference between TDN and dissolved inorganic N (DIN = NH4-N
+ NO;-N). Soluble reactive phosphorus (SRP) was measured using the ascorbic acid method
(Murphy and Riley 1962) with a 5 cm quartz cell to enable the detection of low SRP
concentrations (lower detection limit of ~1 pg P L™). Total phosphorus (TP) was measured by
persulfate digestion combined with the ascorbic acid method (Valderrama 1981).

We used specific ultraviolet absorbance (SUV Ajs4) to assess DOM quality (Weishaar et
al. 2003). The SUVA;s4 of DOM, which is an indicator of aromatic carbon content, was
measured at 254 nm on a Genesys 5 Spectrophotometer. In forested and wetland streams,
SUVA;s4 typically ranges from 3 to 5 L mg-C'1 m’ corresponding to an aromatic C content of
15-35% (Weishaar et al. 2003). Bioavailable DOC (BDOC) was measured for each stream using

laboratory incubations following the methods of Fellman et al. (2008). Streamwater was initially
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filtered through a 0.2 um filter, a microbial inoculum was added, DOC was analyzed and
samples were incubated in the dark at room temperature. After 30 days, the solution was re-
filtered through a 0.2 um filter, DOC was re-measured, and BDOC was calculated as the
difference in sample DOC before and after the 30-day incubation. The microbial inoculum was
prepared by leaching stream sediments followed by filtration through a Whatman GF/D filter
(2.7 pm).
Statistical Methods

For each chemical species considered, an identical statistical procedure was followed for
analysis. A random forest/classification tree (CART) technique was used. CART models are
useful when complex interactions and autocorrelation between variables are expected (Brieman
et al. 1984), data are often non-normally distributed, and interpretable results are needed (as
opposed to simply a predictive model). However, it is susceptible to non-optimal solutions and as
a result, variable selection prior is often practiced (e.g. (Cutler et al. 2007). In this case, the five
most important variables (as measured by total reduction in deviance) were determined using
Random Forest (Brieman 2001). While this method is robust to the non-optimal solutions,
interpreting interactions between the variables is difficult. To investigate specific interactions
between those variables, traditional CART methods using the rpart package from R were
utilized. Optimal tree size was determined by minimizing the 10-fold cross validated error.
Linear regressions in R were calculated where appropriate and if necessary, data were log

transformed to meet normality and equal variance assumptions.

Results

Water 6'°0 analysis

10
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Streamwater 8'*O values ranged from -10.2%o to -14.4%o, with an average of -12.5%o
(Table 1, Fig. 2). These values were slightly more depleted than the mean value for historical
rainfall (-11.7%o, Fellman et al. 2014) collected in Juneau (~60 km southeast of Cowee Creek)
likely indicating isotopically depleted water from snowmelt contributed to streamflow in a
number of our study streams. Regression analyses showed that as watershed size (r* = 0.27, P <
0.01, log;o transformed), max elevation (r2 =0.23, P <0.01, log) transformed) and mean
watershed slope increased (r2 =0.48, P <0.01, logo transformed), streamwater §'%0 values
become more depleted. The random forest/CART analysis (model r* = 0.81) identified mean
watershed slope followed by the percentage of the watershed <10° as the most useful in
explaining streamwater 3'°0 values (Fig. 2).
Dissolved organic matter concentration, quality and bioavailability

Concentrations of DOC ranged from 0.6 to 30.5 mg C L™ across the study streams but
only four streams had concentrations >10.0 mg C L™ (Table 1, Fig. 3a). Random forest/CART
analysis identified four landscape components that explained the greatest variation in stream
DOC concentration (model 1* = 0.89), with mean watershed slope (negative relationship) the
strongest predictor of DOC (Fig. 3a). In watersheds with a mean slope >13.75° (n=34),
aboveground biomass (negative relationship) and to a lesser extent topographic wetness and % of
low-slope area (<10°) best explained stream DOC concentration (Fig. 3a). Similar to DOC, mean
watershed slope (negative relationship) was the strongest predictor of streamwater DON
concentration (model r* = 0.80, Fig. 3b). Mean tree height (negative relationship) was also
associated with low streamwater DON concentration in high gradient watersheds (slope

>15.25°). Overall, concentrations of DOC and DON were positively related for all streams
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together (r* = 0.81, P < 0.01, logo transformed) and negatively related to streamwater 8'°0
values (DOC > = 0.47, P < 0.01, DON r* = 0.47, P < 0.01).

Streamwater SUV Ajs4 values varied from 3.0 to 4.7 L mg C!' m"! across the study
streams (Table 1), corresponding to a range in aromaticity of 23 to 34% (Weishaar et al. 2003).
Random forest/CART analysis showed that landslide susceptibility (negative relationship) was
the strongest predictor of SUVA;s4 values (model = 0.77, Fig. 4a). In watersheds with low
landslide susceptibility, mean slope (negative relationship) was the strongest predictor of
SUVA,s4 values followed by landslide susceptibility (on that subset of plots) and aboveground
biomass (Fig. 4a). Overall, SUVA;s4 values were negatively related to landslide susceptibility (r2
=0.35, p < 0.01) and positively related to streamwater 8'°0 values (r* = 0.34, P < 0.01) across all
streams.

Percent BDOC varied from 3 to 28% (0.1 to 5.0 mg C L) across the study streams.
Random forest/CART analysis identified four predictor variables that best explained streamwater
BDOC concentration (model 1* = 0.93, Fig. 4b), with mean watershed slope (negative
relationship) the strongest predictor of concentrations (r* = 0.28, P < 0.01, log;o transformed).
Topographic wetness (positive relationship) was also important in controlling BDOC
concentration in low gradient watersheds whereas aboveground biomass and mean watershed
elevation were important in steeply sloping watersheds. Concentrations of BDOC were
positively related to SUVA;s4 values (r2 =0.43, P <0.01, log) transformed) and SRP
concentrations (r* = 0.18, P < 0.01, log,, transformed), providing evidence of a link between
DOM quality, nutrient availability and DOC bioavailability to stream microbial communities.
Similar to DOM concentration, 5'%0 values were positively related to SUVA;s4 (r2 =0.34,P<

0.01) and BDOC concentrations (r* = 0.55, P < 0.01, log;o transformed).

12
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Inorganic nutrient concentrations

Concentrations of SRP ranged from below detection to 17.4 pg P L (mean of 1.9 ug P
L although there were only two streams with concentrations >5 pg P L' (Table 1, Fig. 5a).
Watershed surface area (positive relationship) was the strongest control on streamwater SRP
concentration and to a lesser extent slope and landslide exposure (model > = 0.57, Fig. 5a).
However, cross validation of the model was poor due to the large number of streams with
concentrations at or below the lower detection limit (~1 pg P L™"). Mean TP concentrations were
19.7 ug P L™, suggesting inorganic P contributes very little to streamwater P in most of our study
streams. Watershed size (positive relationship) explained the most variation in TP concentration
(model r* = 0.61, Fig. 5b), with wind storm exposure and to a lesser extent watershed slope
influential in small watersheds (<0.36 km?). Streamwater DIN concentrations (NOs-N is ~70%
of DIN) were controlled by both landscape and vegetative factors, with mean watershed
elevation (negative relationship) the most influential followed by topographic wetness and mean
tree height (model * = 0.66, Fig. 6). Similar to SRP, DIN concentrations were typically at or
near the lower detection limit resulting in poor cross validation of the model.

Random forest/CART analysis of streamwater base nutrient cations (Ca2+, Mg2+ and K
showed that watershed morphology (watershed size and topographic wetness) was the strongest
predictor of Ca concentration (model r* = 0.57, Fig 7). Forest biomass and structure were the
most influential controls on K and Mg concentrations. In particular, canopy coverage (positive
relationship) controlled K concentration (model r* = 0.74, Fig. 8a) and aboveground biomass
(positive relationship) was surprisingly the most important driver of Mg concentration (model I’

=0.32, Fig. 8b). Although aboveground biomass was excluded by the CART analysis in favor of

13
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mean canopy cover, these two variables were positively related (r* = 0.93, P < 0.01). Together,

these results provide more evidence of a tight vegetative control on streamwater K concentration.

Discussion

Our initial goal of evaluating whether LIDAR generated data on forest biomass, structure,
and watershed morphology would be a strong predictor of stream biogeochemistry was
supported for most of the biogeochemical species examined in this study. Small, steep streams in
the PCTR generally have short water residence times and demonstrate tight hydro-
biogeochemical connectivity with terrestrial ecosystems (Fellman et al. 2009, D’ Amore et al.
2010). Thus, our approach of sampling numerous small watersheds (mean size <0.5 km?)
minimizes some potential confounding factors, such as the instream uptake and/or production of
DOM and nutrients along the stream network (Brookshire et al. 2005, del Giorgio and Pace
2008). We also recognize that sampling streams only once limited our interpretation to the
measurement period and this snapshot may miss seasonal changes in underlying drivers of
stream biogeochemistry. With these limitations in mind, our findings demonstrate that landscape
and vegetative predictors generated from high resolution LIDAR data have clear potential to
enhance our understanding of how changes in management regime impact stream
biogeochemistry in small to mid-sized forested watersheds.

Our finding that mean watershed slope was the strongest predictor of DOC and DON
concentration is consistent with studies in southeast Alaska (D’ Amore et al. 2015) and other
forested regions (Rasmussen et al. 1989, Frost et al. 2006, Jankowski et al. 2014). This
relationship reflects the rapid movement of water and the existence of shallow organic-rich soils

in steeper sloped watersheds as opposed to the presence of carbon-rich wetlands in low gradient
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watersheds that contribute abundant DOM to streams (Fellman et al. 2009, D’ Amore et al. 2010).
Wetlands are most common in flatter areas of the watershed, although they can occur on benches
in otherwise steeply sloping watersheds or on slopes as steep as 15° in southeast Alaska
(D’Amore et al. 2015). Moreover, our finding that in addition to slope, aboveground biomass and
to a lesser extent topographic wetness (wetter areas are more likely to contain carbon-rich soils)
explained 88% of the variation in stream DOC concentration suggests that LIDAR generated
data on forest biomass and watershed morphology is a robust technique for estimating stream
DOC. This approach may be particularly useful for predicting stream DOC in small forested
watersheds where fine resolution is needed to resolve subtle differences in forest biomass,
structure and topography.

Watershed morphology appears to be an important control on stream DOM
biogeochemistry, with DOM bioavailability best explained by watershed slope and DOM quality
(estimated by SUV A,s4) controlled by landslide susceptibility and watershed slope. The highest
BDOC concentrations were associated with low-gradient watersheds, thus confirming the
importance of wetlands and/or organic carbon-rich soils as a potential source of bioavailable
DOM to stream ecosystems (Kaplan et al. 2006, Fellman et al. 2008). Similarly, DOM derived
from wetlands or from forest floors with deep organic soils is enriched in aromatic carbon
content (typically SUVA,s4 values 4 to 4.6 L mg-C'1 m™) and typically dominates the DOM pool
in low-gradient watersheds (Fellman et al. 2009, Hanley et al. 2013). On the other hand, we
hypothesize that in steeply sloping watersheds with high potential for landslide initiation,
shallow organic carbon-rich soils combined with DOM adsorption on mineral soils (Qualls and
Haines 1992, Qualls 2000) reduces aromatic carbon inputs to streams resulting in SUVAjsy4

values generally <4.0 L mg-C"' m™.
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Our findings that streamwater SRP and TP concentrations were best explained by
watershed surface area/size, slope, elevation and windstorm exposure was not surprising given
landscape erosion can significantly increase the supply of available P to ecosystems (Vitousek et
al. 2003, Porder et al. 2005). This combination of predictive variables also suggests exposure to
ecological disturbance (i.e. windthrow), which can mix soils and expose material for more rapid
weathering, influences streamwater P concentrations. Despite this evidence for weathering of P
(mean TP =19.7 ug P L), streamwater SRP concentrations were at or near lower detection
(mean = 1.9 pg P L") in most of study streams. This suggests efficient retention of available P
through biological uptake (Cleveland et al. 2002, Simon et al. 2005, Olander and Vitousek 2005)
and sorption of P (Giesler et al. 2004, Olander and Vitousek 2005) in either soils or streams.

The variation in streamwater DIN and base cation concentrations (Mg2+, Ca®" and K")
were best explained by a combination of vegetative and landscape controls across our study
watersheds. In particular, streamwater DIN concentrations were elevated in mid to high elevation
watersheds with a low to moderate topographic wetness index. This pattern likely results from
the leaching of NOs from alder (4/nus spp.) influenced soils that typically dominate riparian
areas and avalanche/landslide paths common to steeply sloping watersheds (Compton et al.
2003). The essential plant nutrients Mg®*, K™ and Ca*" are derived from rock weathering and our
finding that streamwater Mg®" and K were best explained by aboveground biomass, canopy
coverage and tree height is consistent with the idea that forest productivity (Vitousek 1982) and
foliar leaching (Oyarzun et al. 2005) are strong controls on soluble base cation concentrations.
However, Ca’" concentrations were mostly strongly related to watershed characteristics
(watershed size) suggesting plant uptake and retention was minimal relative to the supply of Ca

through rock weathering (Vitousek 1977). Although our findings provide evidence of a
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vegetative and landscape control on stream Mg, Ca and K, marine aerosols have been shown to
influence anion/cation concentrations in coastal streams (Wigington et al. 1998) and therefore
provide an additional source of variability not included in our analysis.

Streamwater 8'*O values were significantly related to several watershed characteristics
(slope, elevation) and stream DOM concentration, bioavailability and SUV A;s4 values. These
results are consistent with previous research in the Alaskan PCTR showing that streamwater
8'0 can be used to estimate stream DOM concentration in watersheds where landscape source
pools have unique isotopic signatures (Fellman et al. 2014a). Streams with high mean watershed
slopes and elevations had the most depleted §'*O values and lowest DOM concentrations (both
DOC and DON) and SUVA;s4 values reflecting the contribution of organic matter poor
snowmelt to streamflow. Alternatively, streams with the greatest DOM concentration and most
enriched 5'®0O values were associated with low-gradient watersheds dominated by wetlands.
Moreover, 8'°0 values in low-gradient streams were enriched as much as 1.5%o relative to
typical values for historical rainfall in Juneau suggesting water residence time in these
watersheds was long enough to allow for evaporative water loss to occur; thus enriching
streamwater &' *O values (Hamilton et al. 2005, Dogramaci et al. 2012). These findings differ
from studies of northern forested watersheds (Striegl et al. 2005, Frost et al. 2006), which
showed that increased water residence allows for enhanced removal of DOM due to photo and/or
biodegradation processes (Lapierre et al. 2013, Kothawala et al. 2014), likely because of the
much smaller watershed sizes and lower overall water residence times in our study watersheds.

This study demonstrates the usefulness of combining stable isotopes of water and high
resolution LIDAR analyses to better understand the dynamics of the streamwater DOM pool. For

instance, long term changes in stream DOM export are driven not only by watershed morphology
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but interacting ecosystem processes such as net ecosystem production, soil carbon and nutrient
cycling and watershed hydrology(Evans et al. 2005, Riike et al. 2015, Butman et al. 2016).
Understanding the role of varying sources of streamwater in driving watershed DOM export is
critical for predicting how changes in hydrologic forcing, such as increasing amounts of
precipitation falling as rain rather than snow, will impact future watershed carbon fluxes. In this
context, shifts in streamwater 3'°0 will allow its use as a proxy for hydrological and linked
ecosystem effects that can be expected to occur under projected climate change in the region
(Shanley et al. 2015).

There are thousands of streams in the Alaskan PCTR that drain into near-shore marine
ecosystems; many of them are poorly accessible for direct measurement and each has a different
mosaic of landscape features and contributing soils. Describing the linkages between landscape
cover, biomass and stream biogeochemistry is a critical step in understanding how changes in
climate and forest management may influence terrestrial and linked aquatic ecosystem processes.
Our finding that LiDAR generated data on watershed morphology and vegetation explained more
than 57% of the variation in concentration for all measured constituents except Mg”"
demonstrates the potential for this high resolution landscape analysis to generate first order
estimates of stream DOM and nutrient export across the region. These findings provide evidence
for a biogeochemical division that exists within the Cowee Creek watershed where streams can
be organized by their dominant watershed characteristics (i.e. aboveground biomass, slope). We
suggest the use of LIDAR or other biomass quantification methodologies in many of the small
and remote watersheds across the Alaskan PCTR could help calibrate regional biogeochemical
flux models to predict the potential impacts of forest change and management activities on future

carbon and nutrient export to the Gulf of Alaska. With proper field calibration, this approach
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could also be applied to other forested regions with high landscape heterogeneity and relatively

small watersheds, such as the Pacific northwest of the U.S.A and southern Patagonia. This

information could inform land management decisions that have the potential to alter ecosystems
services related to watershed biogeochemical fluxes.
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Table 1. Mean watershed characteristics and biogeochemical concentrations for our 37 study

streams.

Minimum Maximum Mean SD
Size (Ha) 0.75 597.2 49.3 127.8
Slope (°) 9.5 35.3 23.7 7.1
Elevation (m) 119.0 1008.8 439.6 215.3
Aboveground biomass (Mg ha™) 71.7 652.8 367.3 186.9
TWI 7.9 9.5 8.7 0.4
Stream temperature (°C) 3.2 84.2 15.8 19.0
Specific conductivity (us cm™) 5.1 13.8 9.7 1.6
850 (%o) -10.2 -14.4 -12.5 0.8
DOC (mg C L) 0.41 30.48 5.73 6.09
DON (mg N L™ <0.01 0.42 0.11 0.10
SUVA,s4 (mg-C' m™) 2.95 4.69 3.94 0.54
BDOC (mg C L™ 0.07 4.98 0.87 1.13
DIN (mg N L™ BD 0.19 0.02 0.04
SRP (ng N L™ BD 17.41 1.86 2.87
TP (ug N L™ 11.74 33.27 19.74 4.74
Ca* (mgCL™" BD 14.43 3.97 3.49
Mg®" (mg CL™") BD 1.46 0.41 0.35
K" (mgCL™) BD 0.59 0.12 0.13

BD corresponds to below detection limit. TWI corresponds to topographic wetness index.
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Figure legends

Figure 1. Map of the study watersheds and stream sampling sites (yellow circles) near Juneau,
southeast Alaska.

Figure 2. Random forest/CART tree and Box-whisker plots for 8'80 values (%o) across the 37
study streams.

Figure 3. Random forest/CART tree and Box-whisker plots for concentrations of a) DOC (mg C
L") and b) DON (mg N L") across the 37 study streams.

Figure 4. Random forest/CART tree and Box-whisker plots for a) SUVA,s, values (L mg-C™' m"
' and b) bioavailable DOC (BDOC) concentrations (mg C L") across the 37 study streams.
Figure 5. Random forest/CART tree and Box-whisker plots for concentrations (ug P L) of a)
soluble reactive P (SRP) and b) total P (TP) across the 37 study streams.

Figure 6. Random forest/CART tree and Box-whisker plots for concentrations (mg N L) of
dissolved inorganic N (DIN) across the 37 study streams.

Figure 7. Random forest/CART tree and Box-whisker plots for concentrations (mg L") of Ca*"
across the 37 study streams.

Figure 8. Random forest/CART tree and Box-whisker plots for concentrations (mg L") of a) K

and b) Mg”" across the 37 study streams.
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