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Abstract
Wildfires are a significant agent of disturbance in forests andhighly sensitive to climate change.
Short-intervalfires andhigh severity (mortality-causing)fires in particular,may catalyze rapid and
substantial ecosystemshifts by eliminatingwoody species and triggering conversions from forest to
shrubor grassland ecosystems.Modeling andfine-scale observations suggest negative feedbacks between
fire and fuels should limit reburn prevalence as overallfire frequency rises.However,whilewehave good
informationon reburning patterns for individualfires or small regions, the validity of scaling these
conclusions to broad regions like theUSWest remains unknown. Both theprevalence of reburning and
the strength of feedbacks on likelihoodof reburning over differing timescales have not beendocumented
at the regional scale.Herewe show thatwhile there is a strongnegative feedback for very short reburning
intervals throughoutwildland forests of theWesternUS, that feedbackweakens after 10–20 years.
The relationship between reburning intervals anddrought diverges depending on location,with coastal
systems reburning quicker (e.g. shorter interval betweenfires) inwetter conditions and interior forests in
drier. This supports the idea that vegetationproductivity—primarilyfine fuels that accumulate rapidly
(<10 years)—is of primary importance in determining reburn intervals.Our results demonstrate that
while over short time intervals increasingfires inhibits reburning at broad scales, that breaks down after
a decade. This provides important insights about patterns at very broad scales and agreeswithfiner scale
work, suggesting that lessons from those scales apply across the entirewesternUS.

1. Introduction

Fires are widespread agents of change in the world’s
forests (Williams et al 2016). Most ecosystems contain
many species adapted to their local fire regime as a
result (Buma et al 2013). However, iffire rates increase,
burns should begin to intersect with recent fires,
termed ‘reburning,’ ‘short-interval fires,’ or more
broadly ‘interacting disturbances.’ Short interval fires
can have an outsized impact on ecosystem functioning
due to a lack of adaptation to the increased fire
frequency (Walker et al 2018), sometimes resulting in
forest loss (Jackson et al 2009). As a result, the impacts
of reburning over relatively brief intervals are a major
research focus (Buma et al 2013, Donato et al 2016,

Hart et al 2019, Stevens-Rumann and Morgan 2019,
Turner et al 2019). Rapid, directional ecosystem
changes, such as converting those forests to alternate
ecological regimes (e.g. grasslands), occur via several
mechanisms: reducing the efficacy of adaptive resi-
lience mechanisms (e.g. serotiny, Buma and
Wessman 2011; resprouting, Fairman et al 2019),
interval squeeze (Enright et al 2015), reseeding failure
(Bowman et al 2014), decreased organic layer depth
(Brown and Johnstone 2012), and changes in species
flammability producing positive or negative feedbacks
with future fire probability (e.g. Brooks et al 2004,
Paritsis et al 2015).

How the rate of reburning is changing, and where,
is therefore an important question. While not all
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portions of the world are expected to see increasing
fire rates, most temperate latitudes are likely to see
major increases in fire frequency (Mortiz et al 2012).
Previous work suggests increasing fire rates could limit
future fire occurrence—a negative feedback (Parks
et al 2015). This feedback can be useful, as prescribed
burning can limit ‘unplanned’ fires (Price et al 2015).
But for how long?It is vital that we understand the
prevalence, trends, and correlating factors with
reburning in recently burned forest ecosystems, but
while there are many excellent local and landscape
scale investigations of reburning trends and feedback
mechanisms (e.g. Parks et al 2016, Harvey et al 2016,
Erni et al 2017, Tepley et al 2018, Hart et al 2019), a
broad-scale assessment of trends has not been attemp-
ted. It is important to determine if trends and feed-
backs suggested at finer scales do indeed scale up to
broad regional patterns.

Mechanistically, much has been learned about
reburning and feedback mechanisms. Climate and
topography strongly influence recovering vegetation
that ultimately fuels subsequent fires (Coppoletta et al
2016, Erni et al 2017, Grabinski et al 2017, Parks et al
2018) and climate (especially inter-annual moisture
deficits, Westerling 2016) affects flammability as well.
Extreme fire conditions, such as intense drought, can
overwhelm negative feedbacks on burning associated
with low fuel loads (Parks et al 2018, Tepley et al 2018),
and increasing aridity will lead to increasing burn
probabilities in many locations (Coppoletta et al 2016,
Littell et al 2016, Keyser and Westerling 2017). Look-
ing past the first fire, however, suggests that fuel lim-
itations immediately after a burn will limit reburn
activity—at least until the landscape regenerates
biomass (Heon et al 2014, Coppoletta et al 2016).
Conceptually, fine-scale studies suggest that climate-
vegetation dynamics should result in differential feed-
backs—moisture driving increased fire frequency in
productive systems that are primarily fuel limited
(with droughts limiting reburning; Parks et al 2018),
and drought driving increased fire frequency in sys-
tems that have substantial biomass but are primarily
ignition/condition limited. The role of topography is
realized at finer scales, with southerly aspects and stee-
per slopes generally drier and less productive and play-
ing into the pattern of burning in any given event
(Harris and Taylor 2017). These factors driving feed-
backs between fires have been well documented in
local studies (for a review, see Prichard et al 2017).

Despite this, the prevalence and temporal nature
of reburning likelihood—how long the negative feed-
back lasts, and when/where it disappears—has not
been explored at broad scales. In other words, the abil-
ity of previous studies to scale up their conclusions,
that there is generally a significant feedback on fire
likelihood for ∼10–20 years (e.g. Harvey et al 2016,
Parks et al 2018), is unknown. Here we explore that
potential for scaling previous, foundational, and site-
specific work to the wildland forests of the Western

US. We explicitly do not look at managed areas,
deforested areas, or landscapes with intense human
presence, which dramatically alters fire likelihood (e.g.
Fusco et al 2016). The data presented here are the first
to document reburning trends at this scale, providing
context for this important driver of long-lasting eco-
system change.

We use the longest spatially-explicit, high resolu-
tion fire history mapping (1984–2016, 30 m resolu-
tion) available to test that intuition across theWestern
US. Our primary questions are: Are increasing fire
rates inhibiting reburning frequency and at what time-
scales?Are those reburns associated with differing
topographic contexts, and is that association changing
with time?Are reburns associated with droughtier
conditions, and is that relationship changing
with time?

2.Methods

The analysis region spans the western US (figure 1).
The analysis was limited to reburning in wildland
forests. This was done using remote sensing derived
landcover classification and land use maps (anthro-
mes: Ellis and Ramankutty 2008, agriculture fraction:
Ramankutty et al 2010). The anthrome dataset was
created using population density, land use, and land
cover. To focus on forests and limit human influence,
we restricted the analysis to pixels classified as ‘remote
forests’ or ‘wild forests’ indicating little to no human
presence. This was done to avoid unintentional
topographic/climatic/ecoregion bias that could
introduced by reburning associated with human
causes (Fusco et al 2016). We eliminated areas with
>1% agriculture in the pixel, a conservative step
intended to remove any spurious reburning associated
with farming.

2.1.Data sets
For burn data within those wildland forest locations,
we used the Monitoring Trends in Burn Severity
(MTBS) database (www.mtbs.gov; 1984–2016). The
MTBS database is a remote-sensing based mapping of
all major (>404 ha) fires in the United States (30 m
resolution). As such, small fires <404 ha are not
included here. Severity is classified from 1 to 4, with 1
being low severity/unburned and 4 being severely
burned. Severity is based on pre- versus post-reflec-
tance data. Because this is an automated process, there
can be concerns about the cutoffs used between
categories and unburned areasmay be included within
burn perimeters (Kolden et al 2015). Therefore, we
limited our analysis to locations with severity�2; this
cutoff was applied to avoid unburned/low severity
locations within fire, avoids errors in burn perimeters,
and limits inconsistencies in severity classification
betweenfires.
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For drought magnitude, the standardized pre-
cipitation-evapotranspiration index (SPEI) was used
(Beguería and Vicente-Serrano 2014). SPEI is an
extension of the standardized precipitation index that
incorporates evapotranspiration, making it more rele-
vant for ecosystem-climate interactions, such as how
drought impacts fuel flammability. SPEI was calcu-
lated for the 12 month period prior to each year and
extracted for each burn year (0.5° resolution,
1984–2016); high SPEI indicatesmoisture surplus, low
a deficit. It is standardized within the time series, and
so was used for comparing differences in conditions at
a given point rather than direct numerical compar-
isons between points. SPEI was extracted for each
burn point for the year of the fire, incorporating yearly
variability in weather. For topography, slope and
aspect were extracted for each point (NASA ASTER;
30 m resolution). Aspect was transformed to 0 (north/
northeast) −1 (south/southwest) scale using Moisen
and Frescino (2002).

Data were grouped according to their Level III
EPA ecoregion (US Environmental Protection
Agency 2013,figure 1); ecoregions with<10fires over-
all were eliminated for the analysis to limit spurious
noise. Note that because we delineated forested area
via the more detailed anthrome classification and then
grouped by ecoregion, some fires are included from
ecoregions not typically considered forested (e.g.
coastal California) and others were excluded from
ecoregions typically forested (e.g. if they occurred
within non-forested parts of that ecoregion). For com-
putation efficiency, the region was sampled at a den-
sity of approximately 1 point per 2 km2 (final
n=185 423; figure S1 is available online at stacks.iop.
org/ERL/15/034026/mmedia). Percentage of total
burn area was calculated as the sum of burned points
versus total points. Reburns were defined as single

point locations withmultiple burn dates, as defined by
theMTBSdataset.

To assess trends in wildland fires, a moving win-
dow was used to avoid biasing reburn counts to later
years, given the longer period of observation inherent
at later time points. Reburns can be arbitrarily defined;
here we use four intervals: 5, 10, 20, and 25 year. As the
interval increases, the ability to compare across years
declines due to the MTBS observation availability
(33 years). These intervals were chosen because they
match and then approach critical points where
reburning threatens forest resilience; 25 years is
approximately the timespan whenmany seed banks of
forest tree species begin to re-establish, whereas
5 years is clearly too short for tree species across the US
West (Buma et al 2013) and forest recovery is unlikely.
Themovingwindow approach provides the same tem-
poral interval for each data point, enabling consistency
when calculating trends. As a result, the first focal year
begins in 1988 and 1993 for 5 and 10 year intervals,
respectively (and later for 20 and 25 year intervals).
This total was divided by the total number of fires in
the focal year to avoid conflating an increase in
reburning rates with increased burning rates overall.
This was done both overall and for each ecoregion.

2.2. Nullmodel
A reburn is an overlap between a fire in any given focal
year and the fire footprints of previous fires. However,
one has to also define an interval in the past that
constitutes a short-interval fire (for all fires are
essentially reburns over some time period). To deter-
mine if observed reburning rates are different from a
purely random distribution of fires in a given area, a
null model for each year was created. First, the
percentage of landscape burned in the past interval
under considerationwas calculated as:

Figure 1. Study area. (A)Distribution ofwildlandfires from the 1984–2016 time period from theMonitoring Trends in Burn Severity
remote sensing dataset. Fire count at a given point is the number of stand-replacing fires observed at that specific point. Only fires in
non-agricultural lands shown (Ramankutty et al 2010). (B)Ecoregion boundaries (EPA level III). (C)Analysis restricted towildland
forests, representing areas withminimal human presence (Ellis andRamankutty 2008).
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= å
B

BurnPoints

TotalPoints
100,interval

interval *

where BurnPointsinterval are all points with an observed
fire during the temporal interval prior to the focal year,
and TotalPoints are all points in the dataset. This
results in a percentage area burned in the preceding
time period under consideration. For example, for a
10-year interval, all burned points in the previous 9
years would be summed and the percentage of land-
scape burned in that time period calculated. Second,
the percentage of landscape burned in the focal year t,
denotedBt, was calculated as:

=B
BurnPoints

Total Points
100,t

t *

where BurnPointst is the number of fires in the focal
year. This results in the percentage area burned in the
focal year.

Binterval and Bt both represent percentages of the
landscape. These two percentages were randomly dis-
tributed in 10 000 cell environments, creating two
independent sets of simulated burn locations at the
same percentage as observed fires. Expectations for
reburning frequency was calculated as the number of
cells which overlapped, i.e. the sets intersected:

= ÇReburnEvents Count of B B .interval t

And the null expected reburn percentage for that
focal yearwas calculated as:

=ReburnPercent
ReburnEvents

B
.null

t

This process was repeated 10 000 times for each
focal year, and the mean and 95% percentiles
calculated.

This null model naturally produces increasing
reburn rates with time, a simple consequence of the
increase in overall fire rate (p<0.001, r2=0.85).
What is of interest is the rate of change, and in part-
icular if the rate of increase driven by increasing fire
rates (the null model) is matched by observed changes
in reburn rates. Rates of change in the null and
observed models were compared with a standard
ANCOVA (two-tailed). Differences between the null
and observed values were also assessed via subtracting
the observed rate from the mean null rate, with 95%
confidence intervals constructed from the 0.05% and
0.95% quantiles of the null rate distribution. For the
ecoregion scale, the process was identical but con-
strained to only points and percentages within the
focal ecoregion.

2.3. Interval
To assess the importance of topography (slope/aspect)
and drought on reburning intervals, we used linear
mixed modeling. Mixed models are useful for ques-
tions regarding the importance of factors at broad
scales, especially where factors may vary as a function
of location. Multiple model structures were developed
using ecoregion as a random (grouping) variable and

slope, aspect, and SPEI as either fixed variables or as
random slopes, depending on the model (fixed
variables act equivalently across all groups, random
slopes allows the variable influence to vary as a
function of the grouping variable). The interval
between consecutive fires was the response. The most
parsimonious model was determined via AIC. Signifi-
cancewas determined via the 95%confidence intervals
of effect sizes. A Holm-Bonferroni correction was
applied to limit Type II error inflation. Processing was
primarily done in ArcGIS, with analyses in R (R Core
Team2014). A universal alpha valuewas set at 0.05.

3. Results

Overall, fires impacted 15.2% of wildland forests
between 1984 and 2016 (figures 1, S2), with 92.5%
burned once versus 7.4% burning twice and 0.2%
burning thrice. Reburns were spread across the region,
but primarily concentrated in southern California, the
southern desert mountains, and the Idaho portion of
the Rockies (table S1). Although reburns occurred on
significantly steeper slopes compared to unburned
locations (p<0.05, figure S4 inset) and trended
towards southwest aspects (though not significantly,
figure S5), the influence of topography on the interval
between repeat fires was muted. Overall then, reburns
in the observational period were associated with steep,
south facing slopes and drought in most ecoregions,
though some ecoregions tended to reburn in wetter
conditions.

Trends in reburning proportion: overall reburn
proportions increased significantly (p<0.05) regard-
less of how a reburn is classified (5, 10, 20, or 25 years
between fires (figures 2; S3). At the ecoregion level,
sample size is significantly smaller, and short-interval
burns (<10 years) only increased significantly in the
Idaho Batholith (∼1% per decade increase, p=0.02,
r2=0.36). Reburns should increase because of
increasing fire rates, of course, and so were tested
against the null model. At a 5 year reburn interval, the
difference between observed reburning rates and the
null model results increased with time, suggesting fuel
limitation. The rate of observed reburn frequency is
nearly zero (p>0.05) despite rapidly increasing fire
frequency overall (0.2% per year). Put another way,
the slope of the null model is significantly higher than
the slope of the observed change (ANCOVA,
p<0.05). Meaningfully, this negative feedback
disappeared when looking at the 20 year interval
trends (0.38%per year, p=0.09; F=3.391,12), where
reburn rates increased just as fast as the increasing fire
frequency would predict assuming no interactions
(slopes not significantly different: ANCOVA, p>
0.05; figure 2). 10 and 25 year intervals agreed with this
trend of declining inhibition as intervals increase
(figure S3).
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Reburning Interval Analysis: for the mixed model,
which focused on the interval between fires, the most
parsimonious model form included (topographic)
slope as a fixed effect and SPEI as a random slope vary-
ing by ecoregion (i.e. effect magnitude and direction
varying by ecoregion). Aspect was not included in the
most parsimonious model. Steeper slopes had longer
intervals across all ecoregions (figure S4). While the
effect sizes of SPEI on reburn interval overlapped zero
for many ecoregions, several estimates were sig-
nificantly different from zero (figure 3). Coastal
regions generally experienced shorter reburn intervals
when conditions were wetter (higher SPEI was asso-
ciated with shorter return intervals), whereas the esti-
mate for several interior regions was the opposite, with
wetter conditions (higher SPEI) favoring longer
reburn intervals.

4.Discussion

This study demonstrates that reburns are increasing
significantly at very broad scales, agreeing with expec-
tations that as fire frequency increases so will short-
interval events. However, it also demonstrates a short-
term negative feedback that is limiting extremely
short-interval fires in most locations. This suggests
that patterns observed at finer scales (local, landscape,
and regional scale studies, such as Parks et al 2015)
scale to wildland forests of the US West, and that
interpretations of the mechanisms posited by those
studies likely apply across broader regions.

The substantial increase in fires across the West
has been well documented (Dennison et al 2014,
Westerling 2016), and with it an expectation for
increasing reburns. Reburning now occurs within
7.4% of total observed fires in US West forests. Given

the increased rate of total fires, the significant increase
in observed reburns is in line with expectations. The
observed rate is less than anticipated due to chance in
the short-term, however. This is likely associated with
fuel
limitations (e.g. Parks et al 2015, Harvey et al 2016,
Prichard et al 2017), as the effect is strongest for the
shorter time period and gets progressively weaker
when longer intervals are considered. However, even
the longest intervals considered here (25 years) are still
short relative to the life history and reproductive time-
lines of dominant tree species across North America
(Buma et al 2013). A 20 year reburn interval still poses
a threat to many species whose resilience mechanisms
cannot cope with such frequent fires, such as lodge-
pole pine (Pinus contorta), a dominant species across
North American mountain forests (Buma et al 2013).
Thus, the increase in the rate of fire does appear to
pose a risk via reburning at broad scales, despite short-
termnegative feedbacks.

These results suggest 20 year interval reburn rates
will continue to increase as fast as the overall fire rate,
whereas 5 and 10 year intervals are currently partially
inhibited by previous fires. On a yearly basis, there are
few significant differences between the null and expec-
ted early in the record due to low fire activity overall
and subsequent high variability in the null model; in
the last decade there are several years with significantly
lower reburning than expected (figure 2, bottom)
corresponding to recent years of very highfire activity.

Drought strongly influences the interval betweenfires
in many ecoregions (figure 3). Droughty conditions had
anopposite effect dependingon ecoregion; short intervals
were associated with less droughty conditions in more
coastal areas.We interpret this as a function of productiv-
ity of fuels (review: Prichard et al 2017, also explored in

Figure 2.Reburns are increasing. Top: percentage of reburn fires for each time period (5 year interval, (A); 20 year interval, (B) ending
in the year shown.Note that the interval dictates the starting year. Slopes are significantly different for the 5 year interval (ANCOVA,
p<0.05), but not significantly different from the 20 year interval, implying a decline in negative feedbacks at this scale. Bottom:
difference between observed and expected reburn rates for 5 year (B) and 20 year (D) intervals; bars show 95%quantiles as determined
from 10 000 nullmodel runs. Generally, observed rates are lower than nullmodel expectations on an annual basis.
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Parks et al 2018), potentially due to increasingfine/grassy
fuels associated with wetter conditions and corresp-
onding to a reduction in tree cover with fire (Grabinski
et al 2017). The drier conditions in interior forests are
consistent with this concept aswell—fuels (in the formof
woody debris) do exist but require extreme drought to
carry fires, and the low productivity in general limits fine
fuel accumulation, at least over this observational period.
It should be noted that drought/moisture conditions
vary over multiple timescales, some of which may be
longer than the timescale of observation (1984–2016) and
the role of drought over longer time periods should be
explored with other site-specific proxies. Overall, diver-
gence in terms of reburn response to drought between
coastal California forests and the remainder of the West
may be significant in the future as climate shifts. Demon-
strating that these feedbacks hold over the entireUSWest
is valuable and useful in constraining future broad-scale
modeling efforts, as well as validating inferences from
finer scale studies.

Positive severity feedbacks (Barker and Price 2018)
have been observed at finer scales and the role of man-
agement can be critical in managing these complex
interactions between climate and topographical ten-
dencies towards reburning (reported here, Prichard
et al 2017), the local specifics of recovering vegetation
(e.g. invasive species; Brooks et al 2004), and human
actions (management/land use change; Thompson
et al 2007, Fusco et al 2016). Prescribed fire may be a
useful tool towards managing reburning impacts after

a major wildfire (Barker and Price 2018) by strongly
reducing fuel loads and avoiding intense reburns that
may trigger forest loss (Buma et al 2013, Enright et al
2015). Biome types can influence the efficacy of pre-
scribed fire in reducing future fires via fuel reductions,
the same mechanism indicated here (Price et al 2015).
An interesting question is the role of historical fire
suppression (early to late 20th century) and its role in
reburn probabilities; fires in suppressed areas can be
more intense due to increased fuels (with high varia-
bility; Steel et al 2015), but the impacts on reburn
probabilities after that fire are unknown. Fire predic-
tion and effects modeling must take these spatial and
temporal interactions into account, rather than naïve
non-spatial modeling, because of the strong role of fire
history in future burning at any given locations.

This study demonstrates an increase in reburning
across the US West, but also ample evidence for nega-
tive feedbacks. It suggests that feedback mechanisms
proposed at finer scales are indeed relevant across
extremely broad regions, but that those feedbacks are
relatively short-lived. Overall, as fires increase so do
reburns, and with them new challenges for ecosystems
and society.
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