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Main Text Words: 4,290 Abstract Words: 279 27 

Abstract  28 

 Accurate soil organic carbon (SOC) maps are needed to predict the terrestrial SOC feedback to 29 

climate change, one of the largest remaining uncertainties in Earth system modeling. Over the last decade, 30 

global scale models have produced varied predictions of the size and distribution of SOC stocks, ranging 31 

from 1,000 to > 3,000 Pg of C within the top 1 m. Regional assessments may help validate or improve 32 

global maps because they can examine landscape controls on SOC stocks and offer a tractable means to 33 

retain regionally-specific information, such as soil taxonomy, during database creation and modeling. We 34 

compile a new transboundary SOC stock database for coastal watersheds of the North Pacific coastal 35 

temperate rainforest, using soil classification data to guide gap-filling and machine learning approaches 36 

used to explore spatial controls on SOC and predict regional stocks. Precipitation and topographic 37 

attributes controlling soil wetness were found to be the dominant controls of SOC, underscoring the 38 

dependence of C accumulation on high soil moisture. The random forest model predicted stocks of 4.5 Pg 39 

C (to 1 m) for the study region, 22% of which was stored in organic soil layers. Calculated stocks of 228 40 

± 111 Mg C ha-1 fell within ranges of several past regional studies and indicate 11-33 Pg C may be stored 41 

across temperate rainforest soils globally. Predictions compared very favorably to regionalized estimates 42 

from two spatially-explicit global products (Pearson’s correlation: ρ = 0.73 vs. 0.34). Notably, 43 

SoilGrids250m was an outlier for estimates of total SOC, predicting 4-fold higher stocks (18 Pg C) and 44 

indicating bias in this global product for the soils of the temperate rainforest. In sum our study 45 

demonstrates that CTR ecosystems represent a moisture-dependent hotspot for SOC storage at mid-46 

latitudes. 47 

 48 

Social Media Abstract: Large soil carbon stocks track climate gradients in the N. Pacific coastal 49 

temperate rainforest 50 

 51 
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 52 

1. Introduction  53 

Accurate global soil organic carbon (SOC) maps are necessary to validate terrestrial carbon (C) 54 

cycle predictions in Earth System Models (ESMs; Todd-Brown et al 2013) however current SOC models 55 

drawing on international pedon (soil profile) databases (SoilGRIDs, HWSD, ISCN, etc.) display 56 

considerable differences (Köchy et al 2015; Sanderman et al 2017, 2018). Database construction, 57 

including filling data gaps, account for some of these discrepancies (Tifafi et al 2018) while other sources 58 

of uncertainty are associated with scaling up spatially from relatively sparse pedon observations (~1 m2) 59 

to globally gridded products (Todd-Brown et al 2013) and the loss of information relevant to SOC storage 60 

at intermediate scales (10 m2 – 1 km2) such as topography (Mishra and Riley 2015; Siewert et al 2017). 61 

Regional digital soil mapping may help bridge these scale discontinuities and produce finer resolution (< 62 

100 m) predictions that retain information on the spatial drivers of SOC storage (Minasny et al 2013). For 63 

example, Sanderman et al (2018) compiled mangrove SOC stock measurements and used them in 64 

conjunction with a global SOC map (Hengl et al 2017) and maps of environmental covariates to estimate 65 

global mangrove SOC at 30 m resolution. The integration of detailed pedological information with 66 

machine learning approaches for large-scale spatial predictions may also enable improvements in SOC 67 

mapping (Ramcharan et al 2017) and regional SOC assessments may help diagnose errors in global 68 

products by providing higher resolution information on SOC controls and its distribution.  69 

 70 

Regional SOC assessments at high-latitudes have, to date, focused on Arctic and boreal 71 

permafrost soils (Hugelius et al 2013, 2014), while coastal temperate rainforests (CTR) have not received 72 

similar attention despite their similarly high SOC storage (Carpenter et al 2014). Globally, temperate 73 

rainforests contain the highest density aboveground forest C stocks (up to 1500 Mg ha-1; Keith et al 74 

2009), and can be found along the coastal margins of North and South America, Japan and Korea, 75 

Australasia, and Scandinavia (Alaback 1991). The N. Pacific coastal temperate rainforest (NPCTR) 76 

biome is the largest example, and spans 4,000 km of the N. American coast from the Russian River in 77 
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California, to Kodiak Island in the Gulf of Alaska (DellaSala 2011). Although several studies have 78 

produced regional estimates of SOC stocks in Alaska (Leighty et al 2006; Johnson et al 2011; Mishra et 79 

al 2012), no studies to date have produced spatially-explicit SOC stock estimates across the 80 

transboundary domain of southeast Alaska (SEAK) and coastal British Columbia (BC). 81 

 82 

Soils of the NPCTR can store large quantities of SOC, especially in the wet seasonal and 83 

perhumid zones (Carpenter et al 2014), with stocks > 300 Mg ha-1 (to 1 m mineral soil depth) frequently 84 

observed in SEAK (Johnson et al 2011) and stocks of > 200 Mg ha-1 common in coastal BC (Shaw et al 85 

2018). These large SOC stocks have accumulated in distinctive soil conditions across the NPCTR’s 86 

mosaic of three hydropedologic landscape units (Lin et al., 2006): (1) upland forest soils on well-drained 87 

slopes, (2) forested wetlands, and (3) poor (lowland) fens (D’Amore et al 2015). Despite their relatively 88 

young age (12-14 cal ka BP; Eamer et al 2017), elevated C concentrations are observed in mineral soils 89 

that often exceed 1 m in depth (Chandler, 1943; Michaelson et al., 2013) due to a combination of rapid 90 

mineral weathering, high primary production and litter inputs, and the translocation of soluble C into 91 

deeper horizons (Alaback 1991). In addition to mineral soils, the perhumid NPCTR also exhibits a variety 92 

of vertically-accreting organic soils, including deep (3-5 m) peat-forming bogs and fens (Heusser 1952, 93 

1954; Hansen 1955; Ugolini and Mann 1979), and thick (> 40 cm) forest floor organic horizons that 94 

accumulate due to slow decomposition under ubiquitous hydric soil conditions and the rarity of fire 95 

(Alaback 1991). In places, organic horizons overlay C-rich mineral soils (known as Folisols, or folistic 96 

horizons) and contribute to the highest pedon C stocks in the NPCTR (D’Amore and Lynn 2002; Fox and 97 

Tarnocai 2011; Johnson et al 2011; Michaelson et al 2013).  98 

 99 

Quantifying total SOC storage across the NPCTR and understanding its environmental controls is 100 

necessary to predict the region’s response to global change, including climate feedbacks. Observational 101 

data (Buma and Barrett 2015) and ecosystem C models (Genet et al 2018) indicate that the NPCTR is 102 

sequestering C. However, changes in the amount and form of precipitation and higher annual 103 
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temperatures may increase growing season length and productivity (Buma et al 2016) while soil warming 104 

may lead to more rapid decomposition of soil organic matter (Davidson et al 2006; Fellman et al 2017). 105 

In the present study we address the need for a unified SOC model for the NPCTR by compiling a new 106 

transboundary pedon database across SEAK and coastal British Columbia that retains relevant 107 

pedological details. With this database we train a predictive model to estimate total SOC stocks spatially 108 

across the region, to enable meaningful comparisons with other regional and global SOC products, and to 109 

explore the environmental controls on SOC in the NPCTR. 110 

 111 

2. Methods  112 

2.1 Study Extent and Characteristics  113 

 The largest climatic zones within the NPCTR are the seasonal and perhumid forests that form a 114 

transboundary extent across SEAK and coastal BC (Alaback 1991). The SOC assessment encompassed 115 

all of the perhumid and part of the seasonal zone, spanning 10° of latitude (Figure 1). The study perimeter 116 

was defined by the outer boundary of rainforest dominated watersheds mapped using a harmonized 117 

transboundary dataset (Gonzalez Arriola et al 2018) between the Fraser River in Vancouver, British 118 

Columbia (BC) and Lituya Bay south of Yakutat, Alaska, excluding the four major river basins (Taku, 119 

Stikine, Nass, Skeena) which extend into interior boreal forest and a more continental climate. 120 

 121 

Mean annual precipitation across the study domain ranges from 1,800 to >3,000 mm and mean 122 

annual temperatures range from 6-9 °C, with monthly means of -5 °C in winter in the north (Farr and 123 

Hard 1987) and ~15 °C in summer in the south (Alaback 1991). Forest species diversity is relatively low, 124 

reflecting a consistent climate and disturbance regime across the study area, and generally dominated by 125 

Picea sitchensis (Sitka spruce) and Tsuga heterophylla (western hemlock) in SEAK (van Hees 2003). In 126 

BC, Tsuga heterophylla and Thuja plicata (western redcedar) become the dominant conifers. Callitropsis 127 

nootkatensis (yellow cedar) and Tsuga mertensiana (mountain hemlock) are found from sea level in the 128 

north to high elevations in the south and Pinus contorta var. contorta (shore pine) is a significant 129 
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component of bog locations throughout. Geology is varied consisting of granitic, basaltic, and limestone 130 

bedrock, the latter of which supports some of the most productive forest, however, much of the surficial 131 

geology is dominated by glacial drift including ablation and compact till, alluvial outwash, and 132 

glaciomarine sediments (Nowacki et al 2003). 133 

  134 

2.2 Transboundary SOC Database 135 

 We compiled a transboundary database of soil profile descriptions (pedons) across SEAK and BC 136 

from published and archive data sources. For each pedon we calculated SOC stocks for the top 1 m of 137 

mineral soil plus surface organic horizons using data harmonization and gap-filling procedures that are 138 

detailed in the Supplementary Information (Sup. Table 1-5). In brief, US soil classification was converted 139 

to Canadian where necessary and gaps filled by published or modeled estimates grouped by soil class, 140 

horizon, and lithology. In contrast to some other regional and global C assessments, this approach 141 

avoided use of generalized empirical relationships between soil properties and missing variables, such as 142 

between soil C and soil bulk density, or soil C and depth. 143 

 144 

2.3 Environmental Covariates 145 

Environmental covariates were selected (Sup. Table 6) to predict SOC stock due to their 146 

relationship with soil forming factors (climate, organisms, relief, parent material, and time; Jenny 1994). 147 

Covariate data were extracted from the rasters at the pedon coordinates and appended to the final SOC 148 

stocks (in Supplemental data) to use in all further analyses. Further details of the 12 selected 149 

environmental covariates along with justification for inclusion and pre-processing steps are listed in Sup. 150 

Table 6. Briefly, only high quality and spatially continuous data products were used. Curating covariates 151 

based upon knowledge of regional soil development facilitates clearer interpretation and reduces the risk 152 

of autocorrelation between variables. 153 

 154 

2.4 Random Forest Model 155 
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A random forest model was trained to predict stocks of SOC across the NPCTR in R (v. 3.4; R 156 

Core Team 2018) using the R-package randomForest (4.6; Liaw and Wiener 2002). Random forests grow 157 

a large number of regression trees (Breiman 1984) from different random subsets of training data and 158 

predictor variables, thereby reducing variance relative to single trees, and greatly reducing the risk of 159 

over-fitting model predictions and non-optimal solutions – though at the cost of interpretability (Breiman 160 

2001). The transboundary database SOC stocks and associated covariates were first split into training 161 

(80%) and testing (20%) data and the model was parameterized to grow 5,000 trees. For each tree, a 162 

subsample equivalent to ¼ of the total sample size was utilized (with replacement). Node size was set at 4 163 

to minimize the out-of-bag (OOB) error based on preliminary testing. Model performance was measured 164 

from goodness-of-fit, distributions of residuals, and predictions of test SOC stocks. Confidence intervals 165 

were computed using an infinitesimal jack-knife procedure (Wager et al 2013). Predictive performance 166 

was measured from test data goodness-of-fit as well as the distribution of the root mean squared error 167 

(RMSE). Predictions were made across the NPCTR study extent using R-package raster (v2.6; Hijmans 168 

2017) which produced a SOC map at 90.5 m resolution. All lakes > 10 ha were clipped from the final 169 

map (HydroLakes; Messager et al 2016) and glacier area was clipped using the Randolph Glacier 170 

Inventory 5.0 (GLIMS; Raup et al 2007) database. Final SOC stocks were adjusted for topography by 171 

scaling the SOC map with actual land surface area calculated from cell slope values. The random forest 172 

model was re-run for the three gap-filling sensitivity analyses (see SI). 173 

 174 

2.5 Comparison to Regional and Global Maps 175 

 Stocks of SOC were compared with two previous Alaskan studies, two regional/national models, 176 

and two global models (Table 1). Published summary statistics for NPCTR regions were either referred to 177 

directly (Johnson et al 2011) or estimated from published data (Michaelson et al 2013). The Canadian 178 

SOC map produced by Tarnocai and Lacelle (1996) was regionalized, rasterized, and resampled to extract 179 

pixels that overlapped with the study boundary and methods to calculate mean and total SOC stocks were 180 

replicated. Two global SOC maps, SoilGrids250m (Hengl et al 2017) and the Global Soil Organic Carbon 181 
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map (GSOC; FAO and ITPS 2018), were downloaded as rasters and resampled from 250 m and 1 km 182 

resolutions, respectively. SoilGrids250m was built from a database of ca. 150,000 soil profiles and a stack 183 

of 158 covariates to produce a continuous global surface of SOC stock to 1 m, whereas the FAO GSOC 184 

map is a composite of national SOC stock assessments and covers a depth of 0-30 cm. Genet et al (2018) 185 

estimated SOC across the N. Pacific Landscape Conservation Cooperative using pedons from relevant 186 

forest cover types in SEAK. Differences in SOC stocks are explored quantitatively in the context of 187 

different extents, gap-filling procedures, and data sources. Finally, the predictive capacity of the random 188 

forest model, measured by the Pearson’s correlation coefficient and RMSE of observations versus 189 

predictions, is compared to two global SOC products: SoilGrids250m and the FAO GSCO map. 190 

 191 

2.6 Spatial Controls of SOC 192 

 To explore interactions between controls on SOC stocks across the NPCTR, classification and 193 

regression trees (CART) was applied to the transboundary SOC database using R-package rpart (v4.1; 194 

Therneau and Atkinson 2011). Unlike weak learner regression trees grown in random forests, CART 195 

analyses fit to entire datasets provide readily interpretable outputs. CART is also well suited to 196 

interpretation of complex data with many interacting variables, non-normally distributed data, and can 197 

identify key covariate interactions and thresholds. 198 

 199 

3. Results  200 

3.1 Summary of PCTR Observations 201 

 Pedon SOC stocks and depths were log-normally distributed (Sup. Fig 2 a-d). Median soil depth 202 

across all the samples was 66 cm and median calculated SOC density was 168.4 Mg ha-1. Other database 203 

summary statistics are provided in Sup. Table 7. Soil classes in the pedon database were mostly 204 

Spodosols (426), Inceptisols (214), and Entisols (84), with fewer Histosols (70) and Folists (9). 205 

 206 
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 Sample locations were generally well distributed across the study extent with some clustering 207 

around S Vancouver Is., N BC, and central SEAK (Figure 1; Sup. Fig. 2 e-f). The distributions of the 208 

environmental covariate data extracted at pedons were generally very similar to the distributions of 209 

covariates across the region (Sup. Fig 2 e-n). Samples were slightly biased to lower and less steep areas, 210 

and the presence of large icefields and high alpine (not sampled) explained discrepancies in percent forest 211 

cover and land cover classes.  212 

 213 

3.2 Random Forest SOC Model Performance 214 

Model performance was strongest for larger scale patterns in SOC. Though predictions on test 215 

data by the random forest model was low (R2 = 0.32), the predictive model performance on all 216 

observations was high and considerably better than two global SOC products (ρ = 0.73; Figure 2). In 217 

addition, model covariates were representative of the region (Sup. Fig. 2), the mean of the residuals was 218 

zero, and largest errors were under-estimations concentrated in areas otherwise correctly predicted to have 219 

higher than typical SOC (Sup. Fig. 3). We therefore have high confidence in model predictions for 220 

median values and the regional scale patterns in SOC, with less confidence for extreme values and 221 

variation at finer spatial scales. The predictions of the random forest in this study were much more 222 

accurate (R2 = 0.53 vs. 0.11) compared to those extracted from two global products SoilGrids250 and the 223 

FAO GSOC map at the same locations (Figure 2). 224 

 225 

3.3 Estimates of SOC Stocks  226 

Total SOC within the NPCTR of SEAK and BC was estimated at 4.5 Pg C (Table 1) with highest 227 

stocks (> 500 Mg ha-1) found in the central islands of SE Alaska and westerly locations, and lower stocks 228 

(< 200 Mg ha-1) predicted for more southerly and easterly locations. Sensitivity analyses indicated that 229 

SOC stock estimates were most sensitive to bulk density gap-filling assumptions as estimates increased 230 

by approximately 50% after increasing organic horizon bulk density ca. 3-fold to 0.33 g cm-3 (Sup. Table 231 
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5). From the fractional increase in SOC caused by the tripling of organic horizon bulk density, we 232 

computed that 22% of the predicted NPCTR SOC stocks must be stored in organic soil horizons. 233 

 234 

3.4 Environmental Covariates of SOC Stock 235 

 CART analysis (Figure 3) showed that the lowest SOC stocks ranging from 128.5 to 194.8 Mg 236 

ha-1 were associated with the driest (< 2,147 mm MAP), southeasterly locations. Intermediate stocks 237 

(252.7-442.9 Mg ha-1) were assigned to wetter climates at higher topographic positions (upslope). Very 238 

high SOC stocks (336.0-523.3 Mg ha-1) were also associated with wet climate areas (2,147 – 2,833 mm) 239 

on foot-slope (downslope) landscape positions. Finally, exceptionally high SOC stocks of 446.2 - 708.6 240 

Mg ha-1 were assigned to the wettest climates (> 2,833 mm) at relatively low elevations (< 189 m). 241 

  242 

4. Discussion 243 

4.1 SOC Stocks in the Global Context 244 

The estimated 4.5 Pg C stored within perhumid and the northern seasonal NPCTR watersheds 245 

indicates the region contains approximately 2% of North American SOC within less than 1% of its 246 

surface area (Köchy et al 2015). Using a simple upscaling from study region mean stocks (228 ± 111 Mg 247 

ha-1) to global CTR extent (ca. 9.7 x 105 km2; Alaback 1991) we can estimate that 22 ± 11 Pg C may be 248 

stored globally in CTR ecosystems. These estimates are likely conservative due to our 1 m depth range, 249 

our assumption that the coarse fraction is entirely mineral (Zabowski et al 2011), the abundance of deep 250 

(3-5 m) peat-forming fens that can form in wet landscape depressions (Sup. Fig. 5, 6) that are smaller than 251 

our spatial resolution (Heusser 1952; D’Amore and Lynn 2002), as well as the likely occurrence of 252 

cryptic wetlands hidden within forests (Creed et al 2003). 253 

 254 

In a review of global SOC, Jackson et al (2017) calculated the first biome-specific SOC stocks, 255 

estimating that 64 Pg C is stored in ca. 6 M km2 of non-permafrost soils in temperate conifer forests. Our 256 

results disaggregate this result further, suggesting CTRs within the temperate conifer forest biome contain 257 
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one-third of the total SOC, while representing less than one-sixth of the biome’s area. Jackson et al 258 

(2017) also estimated that 22% (14 Pg) of the SOC was stored in organic peatlands, which, remarkably, 259 

matched exactly our estimate of the proportion of SOC in organic soil (peatlands and surface organic 260 

accumulations). The exact agreement, while remarkable, is not truly scalable, but it does likely reflect a 261 

common suite of C input and stabilization mechanisms in cool, wet temperate conifer forest ecosystems 262 

that may lead to consistent partitioning of stocks between mineral and organic soils. 263 

 264 

As has been demonstrated for above-ground biomass (Keith et al 2009), SOC densities in the 265 

CTR appear to rank among the highest globally. The mean SOC stock estimate from this study (228 ± 111 266 

Mg ha-1) positions the NPCTR below estimates for permafrost soils (178-691 Mg ha-1; 5th – 95th 267 

percentile), but substantially higher SOC densities than grasslands (56-289 Mg ha-1), evergreen broadleaf 268 

forests (83-223 Mg ha-1), and croplands (60-200 Mg ha-1), and within a similar range as permanent 269 

wetlands (114-474 Mg ha-1; Sanderman et al 2018). Our results also suggest SOC densities to 1 m in 270 

temperate rainforests are higher than in tropical rainforests (85-271 Mg ha-1) perhaps in part due to litter 271 

accumulations which are typically absent in tropical rainforest floors due to very favorable conditions for 272 

decomposition (Parton et al 2007). 273 

 274 

4.2 Model Comparisons 275 

Estimated SOC stocks agreed with some past estimates of SOC storage in Alaskan coastal 276 

rainforests (Johnson et al 2011) but were much lower than the SEAK SOC estimates from Michaelson et 277 

al 2013 (Table 1). The two regional/national studies that approximate SEAK (Tongass National Forest; 278 

Leighty et al 2006) and BC (Tarnocai and Lacelle 1996), when summed, produced an estimate of 5.3 Pg 279 

C compared to our estimate of 4.5 Pg C. However, Tarnocai and Lacelle (1996) integrated SOC to the full 280 

observed depth of organic soils which was found to be approximately ~1.51 m, or ~50% greater than the 281 

reference depth in this study (1 m), which may explain the larger estimate. The GSOC map estimated 282 

lower SOC stocks (2.5 Pg C) because it only considers the top 30 cm of soil, but if it is assumed that ca. 283 
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50% of the SOC stock is stored from 30-100 cm (James et al 2014), then the estimates (~ 5 Pg C) align 284 

well with the present study.  285 

 286 

For one study and two global SOC products we identified large discrepancies with our SOC 287 

predictions. The global model SoilGrids250m and the regional Alaska database produced by Michaelson 288 

et al (2013) were outliers in our comparison, predicting 4-fold higher total SOC for the region, and 2 or 3-289 

fold higher mean SOC, respectively (Table 1). Our model also more accurately predicted the spatial 290 

variation in SOC across the NPCTR relative to the FAO GSOC map and SoilGrids250m (Figure 2). Both 291 

global products showed strong bias for the region, with over-estimates where we predict lower stocks and 292 

weak correlation with the observed stocks overall. Finally, unrealistic spatial discontinuities are present in 293 

the FAO GSOC map at the US-Canada border that did not exist in our transboundary assessment (Figure 294 

5). Global SOC maps created from a mosaic of national inventories clearly benefit where nations conduct 295 

quality SOC assessments, evidenced by the reasonable summed stock estimates of GSOC for the NPCTR 296 

(Table 1). However, we propose that biome-specific assessments are better than national inventories 297 

because spatial discontinuities that form within global mosaics will fall along ecologically significant, 298 

rather than arbitrary political, boundaries (Ramcharan et al 2017).  299 

 300 

The bulk density gap-filling procedure applied by Michaelson et al (2013) was not replicated in 301 

this study due to the observation that the pedotransfer functions (Van Looy et al 2017) relating %C to 302 

bulk density over-estimate organic layer (high %C) bulk density by up to 4-fold relative to published 303 

values (Sup. Fig. 4; Shaw et al 2005). Using these pedotransfer functions would bias the SOC estimates 304 

too high in the NPCTR where organic soils are common (D’Amore et al 2010) and forest floor organic 305 

horizons are often deep (Kranabetter and Banner 2000). Direct comparison of our database with that of 306 

Michaelson et al (2013) illustrates how gap-filling procedures can lead to very different SOC estimates. 307 

Similar issues may underlie discrepancies observed with SoilGrids250m (18 Pg C; Table 1). Models built 308 

using the Harmonized World Soil Database and SoilGrids250m have been gap-filled using pedotransfer 309 

Page 12 of 30AUTHOR SUBMITTED MANUSCRIPT - ERL-105993

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



functions that may overestimate organic soil bulk density and lead to overestimated SOC stocks (Köchy 310 

et al 2015). A recent global model comparison found much larger SOC stock estimates using the 311 

SoilGrids database than from other global databases (Tifafi et al 2017). Our study similarly suggests 312 

SoilGrids250m overestimates SOC stocks within the NPCTR, and possibly in other organic and/or high-313 

latitude soils (Figure 2c). We cannot explain the differences with organic soil bulk density alone, based 314 

upon our sensitivity analysis where bulk density was tripled. We propose that the juxtaposition of highly 315 

contrasting soils in the NPCTR (Sup. Fig. 5, 6) may make the region particularly susceptible to SOC 316 

errors when aggregating and modeling pedon observations. In the NPCTR, C-rich litter layers and organic 317 

soils lie adjacent (vertically and laterally) to mineral soils (Michaelson et al 2013; Shaw et al 2018) and, 318 

without separate representation during gap-filling or modeling steps values may be artificially inflated. 319 

Populating the database and calculating SOC on the basis of pedological information, including 320 

distinguishing surface from subsurface soil horizons, may have improved SOC variable estimation in this 321 

study. 322 

 323 

4.3 Covariates of NPCTR SOC Stocks 324 

 Digital soil mapping assumes properties, such as SOC, can be predicted spatially across 325 

landscapes from the distribution of geospatial covariates related to the classical factors of soil formation 326 

(Jenny 1994; Minasny 2011). We found that high precipitation is the primary control on SOC storage in 327 

the NPCTR; SOC stocks tracked regional gradients in MAP, and longitude, with the highest stocks in the 328 

north coast of BC and especially central SEAK (Figure 3; Figure 4). Topographic attributes including 329 

elevation, wetness, and slope position, which modulate temperature and soil moisture conditions, also 330 

emerged as important controls. Land cover was not a strong predictor, however both the region and pedon 331 

database are dominated by conifer forest which did not distinguish between upland and cryptic forested 332 

wetland coverage. Though lithology has been shown to be important across Alaska generally as a 333 

predictor of SOC stocks (Mishra et al 2012), we did not find support for lithology as a broadly important 334 
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covariate. However, lithology is an imperfect indicator of parent material for soil formation across the 335 

region due to the extensive presence of glacial deposits. 336 

 337 

4.4 Vulnerabilities of NPCTR SOC Stocks 338 

 Stocks of SOC in the NPCTR may be sensitive to several climate-related changes in the coming 339 

century, but the overall direction of effects is uncertain. Wolken et al (2011) highlighted loss of winter 340 

snow and ice as the most important biophysical change in the coastal temperate rainforests of Alaska, 341 

driven by projected average temperature increases of 3.5 ± 1.5 °C by 2100. Based upon the primacy of 342 

MAP and topographic wetness in our analyses, both higher predicted MAP and a reduction in the 343 

percentage as snow (Shanley et al. 2015) may expand the spatial and temporal domain for high SOC 344 

accumulations in the NPCTR. However, this may be balanced by increases in lateral exports of terrestrial 345 

DOC, which is already a distinctively large component of NPCTR ecosystem C budgets (Oliver et al 346 

2017). Similarly, effects of temperature may also be bi-directional. Elevated temperatures lead to rapid 347 

decomposition of NPCTR soil organic matter under laboratory conditions (Fellman et al 2017) however it 348 

is unclear to what degree this effect will be limited by the saturated soil conditions in situ, which 349 

constrain decomposition rates (Freeman et al 2008), or offset by concurrent increases in SOC inputs via 350 

enhanced primary productivity and litterfall (Buma et al 2016; Genet et al 2018).  351 

 352 

4.5 SOC Modeling Considerations  353 

Our study shows that digital soil mapping can be valuable across the NPCTR where soil survey 354 

and conventional soil mapping is challenging (Carpenter et al 2014), however a baseline of high quality 355 

pedon data is still essential for accurate predictions. Vitharana et al (2017) found that existing data for SE 356 

Alaska well represented environmental variability and our covariate data distributions (Sup. Fig. 2) agree 357 

with this conclusion, however, much of the central and northern BC coastline is less well sampled (Figure 358 

1) and those data we did obtain required extensive gap-filling. Our model also under-predicted the largest 359 
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SOC stocks which, as random forests subset data to grow each tree, may be due to relatively few 360 

observations of very high SOC.  361 

 362 

Model improvements may also be possible if input covariate datasets and the final map are 363 

obtained at finer spatial resolution. For example, the NPCTR displays complex topography that may not 364 

be fully resolved at 90 m. Mishra and Riley (2015) found that soil wetness (derived from landform) and 365 

aspect were lost as significant predictors of Alaskan C stocks when moving from a 50 m to a 100 m 366 

resolution. Similarly, Siewert (2017) compared a wide range of resolutions (2 – 1,000 m) for random 367 

forest predictions of a sub-Arctic peatland SOC stocks in Sweden and found resolutions > 30 m led to 368 

underestimates. Building models using more accurately georeferenced pedon data and more finely 369 

resolved (< 50 m) covariate surfaces may improve spatial predictions of SOC.  370 

. 371 

5. Conclusions  372 

 Regional SOC stock assessments can validate and improve global maps by considering drivers, 373 

and compiling datasets, in greater detail. We compiled a SOC database for the NPCTR, using pedology 374 

data to guide gap-filling and predictive modeling. Regression tree models predicted high SOC stocks in 375 

wet coastal watersheds, indicating that the coastal temperate rainforest represents a moisture-dependent 376 

hotspot for SOC at mid-latitudes. 377 

 378 

 379 
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Figure Captions 588 

 589 

Figure 1: The extent of the NPCTR displaying the distribution of soil profile descriptions (light green 590 

circles) and the study extent (dark green pixels) used in the SOC stock assessment. Inset maps show 591 

global (small) and continental (large) extent of the full NPCTR along with the boundaries of climatic sub-592 

regions.  593 

 594 

Figure 2: Predicted vs. observed SOC stocks (Mg ha-1) for individual database profile locations 595 

compared for (a) this study’s spatial predictions, (b) the FAO GSOC map, and (c) SoilGrids250m, with 596 

smooth spline fits (solid line) and 1:1 line (dashed). Pearson’s correlation coefficients (ρ) and root mean 597 

squared error (RMSE) between predicted and observed values are reported for each model. Note FAO 598 

predictions (for 0-30 cm) are doubled assuming approximately 50% of SOC stocks are stored from 30-599 

100 cm depth (James et al 2014). 600 

 601 

Figure 3: Regression tree results for environmental covariates controlling NPCTR SOC stocks.  602 

 603 

Figure 4:  Soil organic carbon stock predictions to 1 m (Mg C ha-1) at 90.5 m resolution for small 604 

NPCTR watersheds across BC and SE Alaska.  605 

 606 

Figure 5: (a) Sharp spatial discontinuities at the border of Alaska (USA) and BC (Canada) in the FAO 607 

Global Soil Organic Carbon (GSOC) map are, in the current study (b), smooth landscape-to-regional 608 

gradients, due to harmonized data compilation, gap-filling, and modeling approaches across the 609 

transboundary extent. Note the FAO GSOC map stock estimates are lower due to a shallower depth range 610 

(0-30 cm). 611 

 612 
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Figures 613 

Figure 1 614 
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Figure 2 625 
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Figure 3 629 
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Figure 4 643 
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Figure 5 652 
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Tables 668 

Table 1: Comparison of methods and results of NPCTR SOC stocks estimated in this study and other regional and global SOC studies  

Study Scale Region Method 
Mean SOC1 

(Mg ha-1) 
Total SOC2 

(Pg C) 

Present Study Regional PCTR Watersheds Random Forest 228 ± 111 4.5 

Present Study – Sens. Test    + High Bulk Density 329 ± 160 6.5 

Present Study – Sens. Test   + High Mineral %C  249 ± 125 4.9 

Present Study – Sens. Test   +  No Coarse Fra. 224 ± 118 4.5 

Johnson et al (2011) Regional 
Coastal Rainforests 
(Upland) 

Database Summary 
Stats. 

240 ± 132 - 

Johnson et al (2011) Regional 
Coastal Rainforests 
(Lowland) 

Database Summary 
Stats. 

258 ± 174 - 

Michaelson et al (2013) Regional SE Alaska 
Database Summary 
Stats. 

587 ± 379 - 

Tarnocai and Lacelle (1996) National 
Regionalized to NPCTR 
(BC only) 

Soil Map Unit 
Assignment  

294 ± 180 3.43 

Leighty et al (2006) State  
Tongass Nat. Forest 
(AK) 

Econometric Flow 
Chart 

- 1.93 

Genet et al (2018) State  
North Pacific Coast LLC 
(AK) 

Land Cover Class - 4.83 

SoilGRIDS250m  
(Hengl et al 2017) 

Global Regionalized to NPCTR Random Forest 486 ± 149 18.0 

GSOC (FAO and ITPS 2018) Global Regionalized to NPCTR 
US: Soil Map Unit 
BC: Ensemble  

136 ± 60 2.54 

1Map of database mean ± SD; a dash denotes no means reported. 2SOC stock for overlap extent with present study; a dash denotes no 
regional prediction. 3Partially overlap extent with this study. Genet et al (2018) extent excludes BC but includes maritime upland and 
alder forest cover across southeast and south central Alaska. 4The FAO Global SOC map extends only to 30 cm. 
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